Структурные и функциональные блоки экосистемы
В экосистеме организмы разных видов выполняют различные функции, благодаря которым осуществляется круговорот веществ. В зависимости от роли, которую виды играют в круговороте, их относят к разным функциональным блокам (группам): продуцентам, консументам и редуцентам.
Продуценты (от лат. producens — создающий), или производители, — автотрофные организмы, синтезирующие органическое вещество из минерального с использованием энергии. Если для синтеза органического вещества используется солнечная энергия, то продуцентов называют фотоавтотрофами. К фотоавтотрофам относятся все зеленые растения, водоросли, лишайники, цианобактерии, автотрофные протисты, зеленые и пурпурные бактерии. Продуценты, использующие для синтеза органического вещества энергию химических реакций окисления неорганических веществ, называются хемоавтотрофами. Ими являются железобактерии, бесцветные серобактерии, нитрифицирующие и водородные бактерии.
Консументы (от лат. consumo — потребляю), или потребители, — гетеротрофные организмы, потребляющие живое органическое вещество и передающие содержащуюся в нем энергию по пищевым цепям. К ним относятся все животные и растения-паразиты. В зависимости от вида потребляемого органического вещества консументы разделяются на порядки. Организмы, потребляющие продуцентов, называются консументами I порядка. К ним относятся растительноядные животные (саранча, грызуны, парно- и непарнокопытные животные) и растения-паразиты. Консументов I порядка потребляют консументы II порядка, которые представлены плотоядными животными. Консументами III и последующих порядков являются плотоядные животные, питающиеся консументами II и последующих порядков. Количество порядков консументов в экосистеме ограниченно и определяется объемом биомассы, созданной продуцентами.
Редуценты (от лат. reducens — возвращающий), или разрушители, — гетеротрофные организмы, разрушающие отмершее органическое вещество любого происхождения до минерального. В экологии отмершее органическое вещество, вовлекаемое в процесс разложения, называется детритом. Детрит (от лат. detritus — истертый) — отмершие остатки растений и грибов, трупы и экскременты животных с содержащимися в них бактериями. Образующееся из детрита минеральное вещество накапливается в почве и в дальнейшем поглощается продуцентами.
В процессе разложения детрита участвуют детритофаги и истинные редуценты. К детритофагам относятся мокрицы, некоторые клещи, многоножки, ногохвостки, жуки мертвоеды, некоторые насекомые и их личинки, черви. Они потребляют детрит и в ходе жизнедеятельности оставляют содержащие органику экскременты. Истинными редуцентами считаются грибы, гетеротрофные протисты, почвенные бактерии, которые разрушают органическое вещество до минерального. Все представители детритофагов и редуцентов, отмирая, также образуют детрит.
Роль редуцентов в природе очень велика. Без них в биосфере накапливались бы отмершие органические остатки, а минеральные вещества, необходимые продуцентам, иссякли бы. И жизнь на Земле в той форме, которую мы знаем, прекратилась бы.
Взаимосвязь функциональных групп в экосистеме можно показать на следующей схеме.
В экосистеме с большим видовым разнообразием может осуществляться взаимозаменяемость одного вида другим без нарушения функциональной структуры.
Признаки биогеоценоза
- Многообразие и различие видов, осуществляющих процессы биогеоценоза;
- Количественный показатель видов, его плотность;
- Его биомасса (показатель количества органического вещества)
Взаимоотношения между видами сложны и разветвлены. Они имеют разный характер:
- Нейтральные, когда организмы биогеоценоза не приносят ни вреда, ни пользы друг другу.
- Нейтральновредные, когда проявляется аменсализм, например: плесень на хлебе.
- Взаимовредные, когда организмы враждуют, конкурируют.
- Полезновредные, когда один вид вредит другому в пользу себе.
- Полезнонейтральные, когда в выигрыше только один организм.
- Взаимополезные, когда, соответственно, польза для обеих сторон.
Примеры в природе
В природе существует очень много видов биогеоценоза. Рассмотрим некоторые из них.
Лиственный лес
Лиственный лес — это сложная экосистема. Лес состоит из таких основных видов растений, как дубы, липы, буки, осины, березы, рябины, клены (видовая структура). Можно выделить несколько ярусов: древесный (низкий, высокий), ярус мха, кустарниковый и травяной (пространственная структура). Растения верхних ярусов — светолюбивы, они более терпимы к изменениям влажности или температуры, чем нижние. Мхи, кустарники и травянистые растения приспособлены к существованию в тени листвы деревьев. Почва устелена подстилкой, которая формируется из опавших листьев, прелой травы, веточек.
Фауна лесных биогеоценозов характеризуется богатым видовым составом. Здесь присутствуют грызуны, хищники (лисы, барсуки, медведи, волки), насекомоядные. Травоядные представлены оленями, лосями и косулями. На деревьях обитают белки, бурундуки. Птицы распределяются по ярусам. Птичьи гнезда можно встретить не только в кроне деревьев, но и в дуплах, кустарниках, на стволах, на земле. В лесном биогеоценозе велика численность насекомых, чьей пищей являются листья (гусеницы) или кора деревьев (короеды). Верхние почвенные слои и подстилку населяют позвоночные (черви, клещи, личинки), бактерии и грибы.
Пруд
Пруд выступает как биогеоценоз, в котором среда обитания организмов — вода. На небольшой глубине растительный мир представлен плавающими, крупного размера, или укореняющимися организмами (кувшинки и камыш). Плавающие мелкие растения располагаются по всей поверхности пруда. Когда численность такого фитопланктона растет, вода окрашивается в зеленый цвет («цветет»). Растения водоема — пища для головастиков, ракообразных, личинок и рыб. Хищные рыбы и насекомые питаются более мелкими организмами. Грибы, жгутиковые и бактерии относятся к организмам, которые разлагают органические соединения. Наибольшее их скопление наблюдается на дне пруда, так как там большая концентрация останков рыб и растений.
Приведенные примеры биогеоценоза отличаются друг от друга видовым составом. Это обусловлено кардинально различной средой обитания. Однако населяющие группы растений — одного типа.
Продуценты: мхи, травы, деревья, кустарники; водоросли, плавающие растения.
Консументы: насекомые, птицы, звери; земноводные, ракообразные, насекомые, хищные рыбы.
Редуценты: водные и наземные виды бактерий и грибов.
Составление схем передачи веществ и энергии (цепей питания)
Схемы цепей питания позволяют нам получить полную информацию о кормовой структуре биогеоценоза. В отличие от обычного бессвязного перечисления видов той или иной экосистемы, схемы передачи веществ и энергии дают возможность проследить взаимоотношения между видами разных популяций, построенных на принципе «пища-потребитель».
Поскольку вещество и энергия постоянно перемещаются, важно также знать направление этого потока. Типичная трофическая цепь записывается линейно
В зависимости от типа пищевой цепи, определяют организм, расположенный в начале. Если целью служит запись пастбищной пищевой цепи, то сначала записывают продуцента (любое растение, способное к фотосинтезу). За продуцентом следуют консументы всех возможных порядков. Между организмами, записанными в строку, рисуют стрелки. Направление стрелок позволяет понять, в какую сторону движется энергия и вещество. Например, трава → кузнечик → мышь → куница → орел. Трава, являясь продуцентом, служит пищей для кузнечиков (консументы первого порядка), которые, в свою очередь, становятся пищей для мышей (консументы второго порядка). Мышами питаются куницы (консументы третьего порядка), а куниц поедают орлы (консументы четвертого порядка). Стрелки показывают направление движения веществ и энергии от травы к орлам
Типичная трофическая цепь записывается линейно. В зависимости от типа пищевой цепи, определяют организм, расположенный в начале. Если целью служит запись пастбищной пищевой цепи, то сначала записывают продуцента (любое растение, способное к фотосинтезу). За продуцентом следуют консументы всех возможных порядков. Между организмами, записанными в строку, рисуют стрелки. Направление стрелок позволяет понять, в какую сторону движется энергия и вещество. Например, трава → кузнечик → мышь → куница → орел. Трава, являясь продуцентом, служит пищей для кузнечиков (консументы первого порядка), которые, в свою очередь, становятся пищей для мышей (консументы второго порядка). Мышами питаются куницы (консументы третьего порядка), а куниц поедают орлы (консументы четвертого порядка). Стрелки показывают направление движения веществ и энергии от травы к орлам.
В детритной пищевой цепи место продуцента занимает детрит — мертвое органическое вещество, которое потребляют консументы первого порядка. Например, мертвое животное → муха → лягушка → змея.
Как правило, при выполнении заданий, перечисляется только список видов, обитающих в экосистеме, а пищевые взаимоотношения между ними приходится определять самому. Сделать это просто. Сначала нужно проанализировать способ питания организмов. При наличии в списке продуцента, именно он выделяется в первую очередь. Обычно, продуцентами в пищевых цепях являются зеленые растения.
Далее выбирается гетеротрофный организм, питающийся растительной пищей, или фитофаг. Затем, хищное животное, поедающее фитофагов и т.д.
Если в предложенном списке организмов отсутствует продуцент, тогда выбирается детрит. В остальном система составления пищевых цепей одинакова.
Смотри также:
- Среды обитания организмов. Экологические факторы. Антропогенный фактор. Их значение
- Разнообразие экосистем (биогеоценозов)
- Саморазвитие и смена экосистем. Устойчивость и динамика экосистем
Показатели и свойства
К неорганическим компонентам биогеоценоза (БГЦ) относят состав атмосферы и почвы, температуру и давление окружающей среды, влажность и другие гидрологические параметры, под воздействием которых живые организмы приобретают присущие их виду черты. Если в природные комплексы с полностью сформировавшейся растительностью вмешивается человек, то их восстановление происходит по законам, которые определяют основными свойствами биогеоценоза. К ним относятся:
- Целостность. Заключается в обеспечении солнечной энергией и питательными веществами всех живых организмов и непрерывном переносе неиспользованной пищи обратно в круговорот веществ.
- Устойчивость. Способность сложившегося БГЦ выдерживать воздействия со стороны внешней среды.
- Саморегуляция. Поддержание численности живых существ в различных пищевых цепочках на определенном уровне.
- Самовоспроизводство. Организмы, составляющие БГЦ должны быть способны к размножению для сохранения и воссоздания популяций.
- Изменение. Количество организмов зависит от сезонных чередований погодных условий.
Для нормального существования БГЦ должны соблюдаться три показателя. Первый — видовое разнообразие, под которым подразумевается совокупность организмов всех классов и групп, обитающих в определенном природном комплексе. Нарушение какого-либо трофического уровня (звена в пищевой цепи) оказывает влияние на всю систему. Второй показатель — плотность популяций.
Чтобы экосистема считалась БГЦ, она должна представлять собой географическое образование и быть однородной по всем параметрам: микроорганизмам, населяющими почвенный слой, флоре и фауне, рельефу, глубине залегания и режиму грунтовых вод, почвообразующей породе. Кроме того, вид обмена веществ у каждого БГЦ особенный, присущий только ему.
Описание
В зарубежной литературе термин биогеоценоз был малоупотребим, из-за схожего понятия — экосистема.
Экосистема — система, состоящая из взаимосвязанных между собой сообществ организмов разных видов и среды их обитания. Экосистема — более широкое понятие, относящееся к любой подобной системе. Биогеоценоз, в свою очередь — класс экосистем, экосистема, занимающая определённый участок суши и включающая основные компоненты среды — почву, подпочву, растительный покров, приземный слой атмосферы. Не являются биогеоценозами большинство искусственных экосистем.
Таким образом, каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Для характеристики биогеоценоза используются два близких понятия: биотоп и экотоп (факторы неживой природы: климат, почва). Биотоп — это совокупность абиотических факторов в пределах территории, которую занимает биогеоценоз и организмы из других биогеоценозов.
По содержанию экологический термин «биогеоценоз» идентичен физико-географическому термину фация.
Свойства
- естественная, исторически сложившаяся система
-
Схема Биогеоценоза
система, способная к саморегуляции и поддержанию своего состава на определённом постоянном уровне - характерен круговорот веществ
- открытая система для поступления и выхода энергии, основной источник которой — Солнце
Основные показатели
- Видовой состав — количество видов, обитающих в биогеоценозе.
- Видовое разнообразие — количество видов, обитающих в биогеоценозе на единицу площади или объёма.
В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.
-
Биомасса — количество организмов биогеоценоза, выраженное в единицах массы. Чаще всего биомассу подразделяют на:
- биомассу продуцентов
- биомассу консументов
- биомассу редуцентов
- Продуктивность
- Устойчивость
- Способность к саморегуляции
Пространственные характеристики
Переход одного биогеоценоза в другой в пространстве или во времени сопровождается сменой состояний и свойств всех его компонентов и, следовательно, сменой характера биогеоценотического метаболизма. Границы биогеоценоза могут быть прослежены на многих из его компонентов, но чаще они совпадают с границами растительных сообществ (фитоценозов). Толща биогеоценоза не бывает однородной ни по составу и состоянию его компонентов, ни по условиям и результатам их биогеоценотической деятельности. Она дифференцируется на надземную, подземную, подводную части, которые в свою очередь делятся на элементарные вертикальные структуры — био-геогоризонты, очень специфичные по составу, структуре и состоянию живых и косных компонентов. Для обозначения горизонтальной неоднородности, или мозаичности биогеоценоза введено понятие биогеоценотических парцелл. Как и биогеоценоз в целом, это понятие комплексное, так как в состав парцеллы на правах участников обмена веществ и энергии входят растительность, животные, микроорганизмы, почва, атмосфера.
Механизмы устойчивости
Одним из свойств биогеоценозов является способность к саморегуляции, то есть к поддержанию своего состава на определённом стабильном уровне. Это достигается благодаря устойчивому круговороту веществ и энергии. Устойчивость же самого круговорота обеспечивается несколькими механизмами:
- достаточность жизненного пространства, то есть такой объём или площадь, которые обеспечивают один организм всеми необходимыми ему ресурсами.
- богатство видового состава. Чем он богаче, тем устойчивее цепи питания и, следовательно, круговорот веществ.
- многообразие взаимодействия видов, которые также поддерживают прочность трофических отношений.
- средообразующие свойства видов, то есть участие видов в синтезе или окислении веществ.
- направление антропогенного воздействия.
Таким образом, механизмы обеспечивают существование неменяющихся биогеоценозов, которые называются стабильными. Стабильный биогеоценоз, существующий длительное время, называется климаксическим. Стабильных биогеоценозов в природе мало, чаще встречаются устойчивые — меняющиеся биогеоценозы, но способные, благодаря саморегуляции, приходить в первоначальное, исходное положение.
Биоценоз и экосистема
В природе популяции различных видов образуют сообщества или биомы. Они характеризуются своими собственными критериями.
Биосообщества — это исторически сложившиеся сообщества популяций различных видов, живущих вместе в одинаковых условиях окружающей среды. Место обитания биокомпа называется средой обитания. Термин «биосоциализм» был введен в науку в 1877 году немецким гидрологом К. Мёбиусом (1825-1908).
Биотический состав и среда обитания представляют собой единую систему, экосистему. Термин «экосистема» был введен в науку английским биологом А. Тэнсли в 1935 году. В русской литературе обычно используется другой термин. Он был изобретен ботаником В. Н. Сухачевым (1880-1967) в 1940 году. Его нельзя рассматривать как биологизм, изолированный от окружающей среды. Именно поэтому термины «биосоциальный» и «экологический» в литературе взаимозаменяемы.
Биосоциумы, как и все живые системы, были созданы в результате процессов естественного отбора. Между организмами в биокампаниях создаются прочные пищевые связи — «пищевые цепи» (рис. 11.3).
Рис. 11.3. Примеры типичных «пищевых цепей»: растения. Травоядные; хищники; бактерии.
Можно выделить различные типы пищевых цепей. Обычно выделяют три основных звена
Производители — производители первичной продукции. Они представляют собой самодостаточные композиции органических веществ, потребляя неорганические вещества из среды обитания.
Потребители — потребители конечного органического продукта. Ядро этой группы составляют многоклеточные животные, но в нее также входят растения и грибы. Существует различие между потребителями первого класса (травоядные) и потребителями второго класса (цинархоидные хищники).
Упадок разрушает органические вещества и питает мертвые организмы. К ним относятся грибки и бактерии.
Организации в экосистеме всегда занимают экологическую позицию. Виды, которые используют одни и те же природные источники функционально схожим образом, называются гильдиями. Это понятие включает все конкурирующие виды, независимо от таксономической интеграции (Pianca E., 1981). Вид может быть членом нескольких гильдий для различных элементов его экологического статуса. Позиции этих видов практически пересекаются, поэтому члены гильдии взаимодействуют друг с другом больше, чем с другими членами сообщества. Однако позиции членов гильдии не полностью совпадают, а в чем-то расходятся.
Насколько перекрывающиеся позиции не приводят к конкурентному исключению — один из фундаментальных экологических вопросов. Экологические наблюдения могут выявить интересную информацию о распределении членами гильдии потребляемых ресурсов, максимизируя их использование и минимизируя конкуренцию.
В природе существует множество различных вариаций, включая некоторые, которые очень трудно идентифицировать. Анализ экосистем выявляет общие критерии регулирования численности, биомассы и утилизации энергии.
Поскольку все цепи связаны друг с другом, между ними происходит специфическая фора и передача энергии. Существуют неизбежные потери, которые можно точно подсчитать. Производство организмов на каждом последующем уровне в среднем в десять раз ниже, чем на предыдущем. Таким образом, пищевая цепь имеет форму пирамиды. Поэтому «правила экологической пирамиды» являются одними из самых важных правил экосистемы.
Структура биогеоценоза
Из рисунка можно понять, что живые организмы находятся в окружении абиотической среды, оказывающей на них прямое или косвенное влияние.
Факторами этой среды являются:
- климатические (атмосфера);
- эдафические (почва, грунт);
- гидрографические (вода);
- орографические (рельеф).
Граница биогеоценоза, как правило, проходит по границе фитоценоза (растительного сообщества) и не имеет чётко выраженных контуров.
Переход от одного растительного сообщества к другому происходит постепенно по мере изменений природных условий. Классический пример биогеоценоза – лиственный лес или озеро.
Ученые рассматривают несколько структур:
Видовая
Она предполагает разнообразие живых организмов, их состав и количество. Сокращение одного вида носит угрозу существованию биогеоценоза.
Пространственная
Популяции распространяются по ярусам, в зависимости от своих потребностей. Чаще всего ярусность определяется растениями. Животные способствуют распространению семян и пыльцы.
Трофическая
Животные в составе одного биогеоценоза служат пищей друг для друга. Сложные пищевые связи образуют пищевые сети.
Поскольку биогеоценозы складываются сотни лет подряд, ученые периодически вводят новые компоненты в их структуру.
Трофические уровни. Цепи и сети питания, их звенья
Трофический (пищевой) уровень — комплекс организмов с одинаковым типом питания, занимающих определенное положение в пищевой цепи.
Пищевая цепь — последовательность живых организмов, способных передавать питательные вещества и энергию от продуцентов (растений) к консументам (хищникам). Соседние звенья пищевой цепи формируют отношения по принципу «пища — потребитель». То есть, если одна группа организмов становится пищей для другой группы, звенья будут сцеплены.
Классификация трофических уровней:
- первый — образуют продуценты (фотосинтезирующие растения);
- второй — консументы I порядка (травоядные животные: овцы, зайцы, насекомые);
- третий — консументы II порядка (первичные хищники, для которых пищей служат травоядные животные: змея, поедающая грызунов, или волк, питающийся кроликом);
- четвертый — консументы III порядка (хищники, питающиеся консументами II порядка, или вторичные хищники: сова, поедающая змей).
Особи одного вида могут занимать несколько трофических уровней в зависимости от источников пищи (например, белый медведь, потребляя ягоды, считается консументом I порядка, но, поедая грызуна, становится консументом II порядка).
Вершину пищевой цепи обычно занимают высшие хищники, которые, как правило, не имеют серьезных врагов (например, крокодил или акула).
Заключенная в одних организмах энергия потребляется другими организмами в процессе круговорота веществ. Перенос энергии и пищи от ее источника — автотрофов (продуцентов) через ряд организмов происходит по пищевой цепи, путем поедания одних организмов другими. Пищевая цепь — это ряд видов или их групп, каждое предыдущее звено в котором служит пищей для следующего. Число звеньев в ней может быть различным, но обычно их бывает 3 — 5.
Пищевые цепи подразделяются на:
- пастбищные;
- детритные.
Пастбищные пищевые цепи – это цепи выедания. Основным источником пищи здесь являются зеленые растения (продуценты).
Например, трава (автотроф) → заяц → лиса. Такие пищевые цепи находятся в непосредственной зависимости от солнечной энергии. Круговорот веществ и энергии в природе определяется пастбищными пищевыми цепями.
Детритные пищевые цепи – это цепи разложения, где в качестве главного источника пищи используются отмершие останки. Органические останки, или детрит, формируют начало детритных пищевых цепей.
Например, листовой опад (детрит) → дождевой червь → дрозд → ястреб-перепелятник. Этот тип пищевой цепи меньше зависит от энергии Солнца. Главный фактор существования данной цепи — приток органических веществ из другой системы. Детритные пищевые цепи осуществляют накопление веществ и энергии в экосистеме.
Значение пищевой цепи:
- изучение пищевых цепей позволяет проследить кормовые взаимодействия между разными организмами в экосистеме;
- знания о пищевых цепях дают возможность оценить механизм движения энергии и проследить перемещение веществ в экосистеме.
Пищевые цепи не изолированы друг от друга. Они взаимодействуют между собой, формируя пищевые сети. Пищевая сеть– это условное образное обозначение трофических взаимоотношений продуцентов, консументов и редуцентов в сообществе. Оценивая схемы пищевых цепей, можно отметить, что каждый организм питается только каким-то определенным организмом. На самом деле, это не всегда так. Как правило, живые организмы могут использовать в качестве источника пищи организмы из разных популяций. Даже организмы из смежных пищевых цепей могут выступать для них компонентом питания. Таким образом, возможно переплетение пищевых цепей с образованием пищевых сетей.
Биогеоценоз животных
Наиболее значимыми в процессах биогеоценоза являются насекомые, черви, ящерицы, пауки и т.д. Они выполняют одну из функций, необходимых для всего процесса биогеоценоза — переработка отмерших останков и отходов. Так же виды беспозвоночных, которые питаются корнями и клубнями растений; наземные, питающиеся листьями, цветами, семенами, корой деревьев и плотоядные или хищные беспозвоночные, которые питаются животной биомассой, соками животных, и кровососущие относятся к этим процессам.
Мыши, сурки, кроты — животные, которые живут в почве, для своей жизнедеятельности им необходимо рыть норы и ходы, за счёт чего почва рыхлится и обогащается кислородом.
За счёт поедания одними животными — других, происходит должный процесс регуляции численности тех или иных видов и сохраняется равновесие и баланс в природе.
Общие черты и особенности
Все БГЦ являются долговременными образованиями, которые складывались не одно столетие. Они имеют между собой хорошо выраженные отличия по видовому составу растительности, которые всегда закономерны и объяснимы с биологической точки зрения. Существующие в природе экосистемы имеют естественное происхождение. Типичные примеры биогеоценоза — луг или степь. На них первичным звеном в качестве продуцента выступают луговые (степные) травы, перерабатывающие энергию Солнца.
Вторичным звеном в цепи питания могут быть кустарники и другие растения, значение которых в производстве глюкозы для БГЦ невелико. Травы и кустарники становятся пищей для птиц, мелких зверей и насекомых, которыми, в свою очередь, питаются хищники. Останки мертвых растений и животных попадают в почву, где микроорганизмы их перерабатывают до неорганического состояния.
В отличие от лугов и степей, фитоценозы лиственных лесов разделены на нескольких ярусов. Высокие деревья, как обитатели верхнего яруса, имеют намного лучший доступ к солнечной энергии, чем растения, живущие в тени на более низких ярусах. Еще ниже кустарников и трав находится слой опади (сухих и гнилых листьев), в котором обитают грибы. Для среды обитания животных в лиственном лесу тоже характерна ярусность. Примеры фитоценозов:
- разнотравные луга и дубняки;
- злаковые луга;
- лишайниковые лиственничники;
- широколиственные леса.
Интересный вариант БГЦ — пруд. Его участники живут в воде, над водой и на дне водоема. Растительность пруда представлена классом водорослей, часть из которых постоянно находится под водой, а часть плавает на поверхности. Ими питаются разнообразные представители фауны — рыбы, ракообразные, брюхоногие, насекомые.
https://youtube.com/watch?v=cHzlbjCKkqI
Искусственные системы
Примерами рукотворных БГЦ могут выступать агробиоценозы, организация которых осуществляется в процессе хозяйственной деятельности человека, а их состояние характеризуется рядом антропогенных факторов. В аграрном секторе к ним относятся виды посевного материала, успешность борьбы с сорняками, уничтожение вредителей, состав и количество удобрений, способы полива.
Искусственные биокомплексы без человеческого участия быстро вырождаются — заброшенные посевы зарастают сорняками, подвергаются нашествию активно размножающихся вредителей и в итоге погибают. Во время этого происходит изменение свойств БГЦ — без антропогенного фактора он теряет способность к саморегуляции и устойчивости.
Условия формирования
В отличие от искусственных, возникающих за короткое время, формирование естественных продолжается намного дольше и иногда достигает сотен и тысяч лет. Участникам необходимо долго приспосабливаться друг к другу, а высокая устойчивость определяется стабильным характером взаимодействия между участниками БГЦ. Динамическое равновесие в таких системах может нарушиться только в результате масштабных природных катаклизмов, значительных техногенных катастроф или грубого антропогенного вмешательства, связанного с разрушениями в биосфере.
Несмотря на то что естественным БГЦ свойственна устойчивость, их свойства со временем могут изменяться, преобразовываясь из одних в другие. Иногда реорганизация происходит быстро, например, в случае обмеления и зарастания небольших водоемов, которые за короткое время превращаются в болота или полностью пересыхают.
В других случаях БГЦ изменяется в течение длительного периода. Например, скальные породы постепенно зарастают мхами, на них появляются трещины, заполненные гумусом. В нем начинает появляться другая растительность, еще больше разрушающая скальную породу. В итоге меняется общий ландшафт, который заселяют новые представители фауны.
Типы связей между организмами
Живые организмы определенным образом связаны друг с другом. Различают следующие типы связей между видами:
- трофические,
- топические,
- форические,
- фабрические.
Наиболее важными являются трофические и топические связи, так как именно они удерживают организмы разных видов друг возле друга, объединяя их в сообщества.
Трофические связи возникают между видами, когда один вид питается другим: живыми особями, мертвыми остатками, продуктами жизнедеятельности. Трофическая связь может быть прямой и косвенной. Прямая связь проявляется при питании львов живыми антилопами, гиен трупами зебр, жуков-навозников пометом крупных копытных и т. д. Косвенная связь возникает при конкуренции разных видов за один пищевой ресурс.
Топические связи проявляются в изменении одним видом условий обитания другого вида. Например, под хвойным лесом, как правило, отсутствует травянистый покров.
Форические связи возникают, когда один вид участвует в распространении другого вида. Перенос животными семян, спор, пыльцы растений называется зоохория, а мелких особей — форезия.
Фабрические связи заключаются в том, что один вид использует для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, птицы при постройке гнезд используют ветки деревьев, траву, пух и перья других птиц.
Биогеоценоз и экосистема
Популяции живых организмов, которые входят в состав биоценозов, тесно связаны не только между собой, но и с условиями среды их существования. Из окружающей среды поступают вещества, необходимые для обеспечения их жизнедеятельности.
Обратно поступают продукты метаболизма. Так формируется определенная система из сообщества организмов и среды их существования. Ученые назвали ее экосистемой. Данный термин предложил в $1935$ году английский эколог А. Тенсли.
Он подчеркивал, что нельзя изучать живые организмы без учета среды их обитания.
Определение 1
Экосистема – это совокупность живых организмов различных видов, которые взаимодействуют между собой и со средой обитания, благодаря чему возникает поток энергии, который образует определенную трофическую структуру и обеспечивает круговорот веществ в средине системы.
Под круговоротом веществ следует понимать обмен веществом между неживой и живой частями экосистем.
Понятие биогеоценоза
В $1940$ году российский советский эколог В.Н. Сукачев ввел в науку понятие «биогеоценоз». Он считал, что понятия «экосистема» и «биогеоценоз» хоть и близки, но не идентичны.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателям
Определение 2
Биогеоценоз – это территория с более-менее однородными условиями существования, населенная взаимосвязанными популяциями различных видов, которые объединены между собой и физической средой обитания круговоротом веществ и потоком энергии.
Сукачев считал, что биогеоценоз, в отличие от экосистемы, является более конкретным территориальным понятием (образованием).
Когда говорится об экосистеме, то имеется ввиду любая совокупность организмов разных видов, связанных между собой трофически, которые не обязательно занимают территорию с однородными условиями.
А биогеоценоз занимает ограниченную территорию с однородными условиями и определенным растительным сообществом – фитоценозом.
Структура биогеоценоза
Так как биогеоценоз представляет собой систему взаимодействия живой и неживой природы, то в его структуре выделяют абиотическую и биотическую части.
В состав абиотической части входят такие компоненты, как неорганические и органические соединения, климатические условия, явления неживой природы (гроза, землетрясения, извержения вулканов и т.п.).
Биотическую часть составляют различные экологические группы популяций организмов, которые объединены между собой трофическими и пространственными связями.
Важная роль в структуре биогеоценоза принадлежит редуцентам. Эти организмы, питаясь останками других живых организмов или продуктами их жизнедеятельности, расщепляют органические вещества до неорганических. Таким образом, они обеспечивают завершение цикла круговорота веществ в природе.
Свойства биогеоценозов
Биогеоценоз, как любая система, имеет ряд свойств. К особенным свойствам биогеоценозов относятся:
- целостность,
- устойчивость,
- способность к самовоспроизводству,
- способность к саморегуляции.
Целостность – это свойство, которое обеспечивается тесными связями организмов между собой и средой. При изменении хотя бы одного компонента нарушается поток энергии и круговорот веществ, поэтому изменяется весь биогеоценоз.
Устойчивость биогеоценозов определяется взаимоприспособленности различных видов к сосуществованию и их адаптации к условиям среды, способности противостоять их изменениям.
Саморегуляция биогеоценозов состоит в колебании количества особей и популяций того или иного вида, биопродуктивности популяций, способов и скорости круговорота веществ в биогеоценозе и потоков энергии вокруг определенных (оптимальных) значений. Регулирующими факторами могут выступать внутривидовые и межвидовые связи («растения–травоядные», «хищник-жертва», «паразит-хозяин» и т.п.).
Способность биогеоценозов к самовоспроизводству зависит от взаимодействия саморегулируемых популяций, входящих в их состав, и обеспечивается природными ресурсами окружающей среды (тепло, наличие воды и еды).
Человек в процессе своей деятельности вольно или невольно изменяет соотношение компонентов в биогеоценозах. Это может вызвать изменение биогеоценозов и всей биосферы вообще.